Estimating causal effects.

نویسندگان

  • George Maldonado
  • Sander Greenland
چکیده

Although one goal of aetiologic epidemiology is to estimate 'the true effect' of an exposure on disease occurrence, epidemio-logists usually do not precisely specify what 'true effect' they want to estimate. We describe how the counterfactual theory of causation, originally developed in philosophy and statistics, can be adapted to epidemiological studies to provide precise answers to the questions 'What is a cause?', 'How should we measure effects?' and 'What effect measure should epidemiologists estimate in aetiologic studies?' We also show that the theory of counterfactuals (1) provides a general framework for designing and analysing aetiologic studies; (2) shows that we must always depend on a substitution step when estimating effects, and therefore the validity of our estimate will always depend on the validity of the substitution; (3) leads to precise definitions of effect measure, confounding, confounder, and effect-measure modification; and (4) shows why effect measures should be expected to vary across populations whenever the distribution of causal factors varies across the populations. Introduction Imagine that the creator of the universe appears to you in a dream and grants you the answer to one public-health question. The conversation might go as follows: You: What is the true effect of (your exposure here, denoted by E) on the occurrence of (your disease here, denoted by D)? Creator: What do you mean by 'the true effect'? The true value of what parameter? You: The true relative risk. Creator: Epidemiologists use the term relative risk for several different parameters. Which do you mean? You: The ratio of average risk with and without exposure—what some call the risk ratio 1 and others call the incidence proportion ratio. 2

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تورش روش‌های آنالیز استاندارد در برآورد اثرات علیتی

Standard methods for estimating exposure effects in longitudinal studies will result in biased estimates of the exposure effect in the presence of time-dependent confounders affected by past exposure.  In the present review article, we first described the assumptions required for estimating the causal effect in longitudinal studies and their structure regarding various types of exposure and ...

متن کامل

Fallibility in estimating direct effects.

We use causal graphs and a partly hypothetical example from the Physicians' Health Study to explain why a common standard method for quantifying direct effects (i.e. stratifying on the intermediate variable) may be flawed. Estimating direct effects without bias requires that two assumptions hold, namely the absence of unmeasured confounding for (1) exposure and outcome, and (2) the intermediate...

متن کامل

Estimating Causal Effects from Observational Data with the CAUSALTRT Procedure

Randomized control trials have long been considered the gold standard for establishing causal treatment effects. Can causal effects be reasonably estimated from observational data too? In observational studies, you observe treatment T and outcome Y without controlling confounding variables that might explain the observed associations between T and Y. Estimating the causal effect of the treatmen...

متن کامل

Estimation of causal effects using linear non-Gaussian causal models with hidden variables

The task of estimating causal effects from non-experimental data is notoriously difficult and unreliable. Nevertheless, precisely such estimates are commonly required in many fields including economics and social science, where controlled experiments are often impossible. Linear causal models (structural equation models), combined with an implicit normality (Gaussianity) assumption on the data,...

متن کامل

Paper SAS374-2017: Estimating Causal Effects from Observational Data with the CAUSALTRT Procedure

Randomized control trials have long been considered the gold standard for establishing causal treatment effects. Can causal effects be reasonably estimated from observational data too? In observational studies, you observe treatment T and outcome Y without controlling confounding variables that might explain the observed associations between T and Y. Estimating the causal effect of the treatmen...

متن کامل

Estimating Average Causal Effects Under General Interference

This paper presents randomization-based methods for estimating average causal effects under arbitrary interference of known form. Conservative estimators of the randomization variance of the average treatment effects estimators are presented, as is justification for confidence intervals based on a normal approximation. Examples relevant to research in environmental protection, networks experime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal of epidemiology

دوره 31 2  شماره 

صفحات  -

تاریخ انتشار 2002